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Wearable sensors enable down range data collection of physiological and cognitive performance of the
warfighter. However, autonomous teams may find the sensor data impractical to interpret and hence influence
real-time decisions without the support of subject matter experts. Decision support tools can reduce the burden
of interpreting physiological data in the field and incorporate a systems perspective where noisy field data can
contain useful additional signals. We present a methodology of how artificial intelligence can be used for model-
ing human performance with decision-making to achieve actionable decision support. We provide a framework
for systems design and advancing from the laboratory to real world environments. The result is a validatedmea-
sure of down-range human performance with a low burden of operation.
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• Rawdata fromwearable sensors and remote physiologicalmonitoring
is not actionable in an operational setting.

• The burden of monitoring sensors can be reduced with AI models.
• Decision support systems can increase the knowledge, skills and abil-
ities of operators in the field.

• Autonomy can be increased when using decision support tools for
human-machine teaming.

1. Decision-support system

In safety-critical professions (e.g., warfare, aerospace, firefighting,
piloting, space travel, air traffic control, and sports) individuals must
make rapid tactical decisions based on many data sources. Real time
monitoring of an individual's physiological and cognitive status can po-
tentially aid the speed and accuracy of tactical decisions. Recent devel-
opments have combined sensors with artificial intelligence (AI) to
deliver precision medicine with individualized metrics of health and
performance.

Remote Physiological Status Monitoring (RT-PSM) systems use sen-
sors to measure and calculate health and performance of an individual
y Elsevier Ltd. All rights reserved.
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by utilizing wearable sensors and ambient detection. This real-time
monitoring of an individual's physiological and cognitive status can po-
tentially aid in tactical decisions down range. For example, heart rate
monitors allow estimation of an operator's physical performance and
energy systems during exercise/exertion. However, heart rate alone
does not facilitate an actionable RT-PSM systemdue to secondary effects
such as: physical load; body position (e.g., laying vs standing); recovery
from recent exercise; sleep status; emotional state (e.g., relaxed vs
afraid); dehydration; digestion of food/ingestion of ergogenic aids
(e.g., caffeine); core temperature (e.g., vasodilation from temperature
or blood loss) and possible viral infection.

The challenge of interpreting human performance data from a RT-
PSM system can be solved by incorporating it into a decision support
system (DSS). A DSS combines sensor data with artificial intelligence
(AI) models to deliver problem solving, actionable choices and
observation.1 This article proposes a framework to determine the devel-
opment of an AI assisted DSS including RT-PSM and reviews common
goals of DSS, including that the system should:

• Be low burden to for operator time, cognitive load and physical
distractions2

• Be low size, weight and power (SWaP)
• Be context aware of the current situation
• Augment the operators' knowledge, skills and abilities (KSA)3

• Be based on an appropriate underlying hierarchy of models
• Share information from a database of decision-relevant information
g AI enabled sensors and decision support formilitary operators in the
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• Provide information that aligns with the decision-maker's expecta-
tions and mental model4

• Support judgments rather than replace them
• Operate at a high level of trust.5

2. Evolution of decision-makingmodels toward a systems perspective

Decision-making is a problem-solving activity that yields a solution.
Several Naturalistic Decision Making (NDM) models have been
developed,6 one of which is referred to as the Recognition-Primed Deci-
sion Model (RPM).7 Briefly, the RPM hypothesizes that people use their
prior experiences to build a repertoire of patterns, including training,
not just real-world experiences. These patterns include relevant cues
and suggest typical types of reactions for that type of situation. If a com-
mander, for example, needs to make a decision, they quickly match
the situation to learned patterns and visualize how that same course
of action will play out in the current context. When there is a clear
match and the mental simulation suggests that a previously used so-
lution would work in the current context, the commander will carry
out that action. Therefore, decision-making in-the-field is a blend of
intuition and analysis.

In 1995, John Boyd8 first presented the now well-recognized
OODA loop of human decision making (Fig. 1). The OODA loop con-
cept describes decision-making as a cycle between observations,
orienting, deciding and acting. Basically, as a situation evolves the
decision-maker observes, with attention primarily focused on the
current problem. Orientation focuses observations based on prior ex-
perience and knowledge drives the focus. It is here that the observa-
tions are processed. Decisions and actions are based on the current
information and knowledge of possible choices. The tempo of the
OODA cycle is critical in situations where the goal is to out-think an
opponent (e.g., during a battle, on a football field, medicine-where
the opponent is the illness or disease).

Other recent research and theoretical endeavors have focused on
human “anomaly resolution” by individuals and groups. For example,
Woods9 defined an iterative process composed of recognition, trouble-
shooting, response, and contingencymanagement. To resolve an anom-
aly, it must first be detected. This involves recognizing anomalous data
or an anomalous situation. The source of the anomaly must then be di-
agnosed through troubleshooting. This is where prior experience or
training has established expectations that focus attention to what is rel-
evant. The initial interpretation and response affects how the anomaly
will progress.
Fig. 1. Boyd's OODA loop, a cogniti
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In the next sectionwe discuss the application of artificial intelligence
(AI), as a systems-based computational tool that can learn the complex
relationships between system inputs and outputs without explicit
programming.22

3. Artificial intelligence

A model in the context of computer science refers to software code
that performs a function. AI models can achieve human level accuracy
performing certain cognitive tasks. These models range from simple
classification models (e.g., cats vs dogs), regression models calculating
continuous variables (e.g., human activity recognition from acceleration
or heart rate from plethysmograph waveforms) to more complex com-
putations including probabilistic decision making. Broadly, AI models
are split into supervised or unsupervised learning algorithms. Super-
vised AI models require labeled data to learn patterns that differentiate
categories (e.g. cat vs dog). Unsupervised models determine correla-
tions which assist with labeling and dissemination in decision making
systems.10

Deep learning is a subset of AI that automatically learns complex re-
lationships between highdimensional inputs to determine themost im-
portant features related to the outputs of interest.11,12 Deep learning
models are commonly described as opaque, or “black box” models as
they offer a high degree of predictive accuracy at the expense of
explainability of the underlying relationships between inputs and out-
puts. Trust is important when using predictive models and typically in-
volves explainability and validation results. Table 1 provides a subset of
computational models ordered by explainability. AI and decision sup-
port tools requiring trust have been used successfully in fields such as
bioinformatics13,14 and neuroradiology.15,16

In the subsequent sections of this discussion, we describe a frame-
work of how AI/deep learning can aid in the exploration and develop-
ment of a DSS.

4. Finding the signal in environmental complexity with AI

A systems theory perspective assumes the whole is greater than the
sum of its parts. Ahn17 described the systems perspective succinctly by
stating “the systems perspective is rooted in the assumption that the
forest cannot be explained by studying the trees individually”. A defin-
ing feature of the systems perspective is how environmental factors
that introduce variability within the system are viewed. Rather than
viewing this variability as nuisance noise to be methodologically
ve model for decision making.



Table 1
Explainability listed by examples of computational approaches.

Explainability Type of model Example type Example application

Highly transparent Linear algebra linear model Modeling muscle respiration40

Calculus Differential equation Skin surface temperature modeling41

Statistics ANOVA Effectiveness of different treatments42

Fuzzy logic Fuzzy model Diagnosis of cardiac hypertrophy43

Bayesian models Conditional probability Diagnosis of medical condition44

Tree based Random Forest Prediction of energy expenditure45

Component Analysis Principal Component Analysis Facial recognition4

Feature-based machine learning Support Vector Machine Predicting Ion exposure form cognitive performance46

Artificial intelligence Convolutional Neural Network Classification of human activity19 regression analysis of ground reaction forces47

Highly opaque Artificial intelligence Recurrent Neural Network Prediction of cognitive load from speech48
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controlled or removed, a systems perspective views this “noise” as a
crucial component required to predict behavior within the system. Tra-
ditional laboratory assessment protocols require an intervention with a
measurable outcome (e.g., jump height or Stroop Effect). Commonly,
field studies will utilize a battery of tests and determine which were
sensitive to the protocol load after completing the protocol. However,
these interactive tests are not practical for operators in the field as
they are distracting and require cognitive and physical interaction. Al-
ternatively, ambient detection observes an individual's performance at
a task to compute an output value, e.g., the timing from keyboard use
can be combined with an AI model to determine cognitive fatigue.18 A
decision support tool can integrate this information to reduce interac-
tion and only require cognitive burden when guiding attention to an
anomaly and assisting with decision support.

Consider the example waveforms presented in Fig. 2, from Russell,19

illustrating an acceleration waveform of a person running outdoors
down an incline on a smooth sealed road versus a dirt track. The
shape and silhouettes of each waveform demonstrate that running on
a dirt track introduces more complex gait mechanics compared to a
Fig. 2. IMU waveforms for running down slopes of various terrain types (sealed road vs
dirt track),19

3

smooth surface. Russell19 showed these waveforms could be used by
an AI model to detect signals such as surface type, slope, activity type
and fatigue.20 The environmental signal was noise for activity recogni-
tion but the signal of interest when detecting surface type.

5. A hierarchical system of models

Implementation of decision support typically involves multiple AI
models. Crump21 discusses an AI stack for implementation of an ethical
medical decision support system based on the ISO 7 layer stack used in
communications engineering. A decision support system is imple-
mented in an hierarchical architecture, such as the OODA loop, with
computed information being passed up and feedback loops generating
new data for lower stages. Each stage of the decision making process
can be considered as a hierarchy of opportunity for computational
tools to assist the human operator. Observation is automated through
sensor data collection including ambient detection22 to reduce the
need for additional activities. AI models can assist with orientation by
interpreting data, often better than a human, by tirelessly observing
time series data such as accelerometery and determining higher order
features such as fatigue. The decision state is typically modeled with a
Bayesian approach to probabilistically determine which information is
required to differentiate between decisions using the highest positive
predictive value. Actions are chosen by an expert systems model
(Fig. 3).

The following section provides practitioners with a systematic
methodology for identifying valid, non-invasive performance measures
for the prediction of real-world task performance decline so that useful
countermeasures, such as decision support or information integration,
may be proactively provided.

6. Selection of valid performance measures

6.1. Measure dependencies

An individual's ability to perform in a range of safety-critical tasks
can be fatigued by stressors which negatively affect physical and cogni-
tive abilities. Stressors shown to affect performance include exposure to
hot or cold temperatures,23 pain,24 physical inactivity,25 isolation,26

time pressure,27 concussion,28 high workload29 and sleep deficits, to
name a few.

The physical or cognitive ability affected (e.g., visuo-motor responses,
sustained attention, selective attention, higher level problem-solving) de-
pends on the stressor type, duration, and intensity. As examples, time
pressure can result in overlooked critical information,30 concussions
have an association with reduced mental flexibility,31 and sleep depriva-
tion has been shown to affect concentration.32 To further complicatemat-
ters, each individual reacts differently to stressors.33,34

Many studies have explored methods for detecting, monitoring,
and aiding performance. However, poor transferability of these



Fig. 3. Hierarchy of computational models to the OODA decision making loop.

B.K. Russell, J. McGeown and B.L. Beard Journal of Science and Medicine in Sport xxx (xxxx)
methods from simulation to the field suggests that either different
cognitive processes are being assessed or that the complexity of op-
erations have not been captured. Inmany cases, technology selection
is based on cost, availability, or successful application in another do-
main. Little attention is given to determining how changes in activity
or sensor profiles compare to the individual's (or group's) tasks at
hand, what cognitive or motor abilities are needed to accomplish
those tasks, the stressors currently being experienced, or how per-
formance or those tasks are affected by the individual or combined
stressors.

6.2. Define safety-critical tasks

Each position in a profession has specific roles and responsibilities.
Task analysis, performed by a trained human factors specialist, identifies
the tasks that must be supported for a particular position. If tasks in-
clude safety-critical mental effort or critical decisions, then a cognitive
task analysis (CTA) should be performed. CTA uncovers what the indi-
vidual needs to know (e.g., information needs) and strategies used to
think through the decision. In addition to helping define a sensible per-
formance metric, CTA is invaluable for training development, interface
design and procedure development.

Once a complete CTA has been performed, pinpoint those tasks that
are performed during safety-critical operations. For example, a TRACON
arrival air traffic controllermust often integrate visual information from
a variety of displays (e.g., arrival rates, aircraft speeds, wind, the time,
projected arrivals). Therefore, visual information integration is a candi-
date ability to monitor for performance decline and/or for which to de-
velop technological support.

6.3. Define stressors

The specific stressors the population will be exposed to prior to and
during the time-frame of the critical decisions should also be deter-
mined. Imagine an astronaut on the International Space Station (ISS)
4

who is piloting a robotic arm located on the outside of the ISS. The astro-
naut is being exposed to microgravity, a high workload, possible vision
changes, elevated CO2 in the cabin atmosphere, an audience of millions,
etc. All stressors should be identified.

6.4. Align stressors with critical tasks

Next, determine how performance has been compromised with ex-
posure to each stressor alone, and in concert.35 This alignment is based
on the published, scientific literature. For example, elevated CO2 has
been shown to affect visuo-motor abilities needed to adjust the robotic
arm position.36 Therefore, sensors indicating elevated CO2 could
communicate with technology that adaptively provides additional
visuo-motor guidance. As another example, imagine a scenario where
a single fighter pilot must navigate to a specific target in a well-hidden
location to eliminate a threat. To find the location may take several
hours at which time he will be running low on fuel, and he is not
equipped with a water canteen. Both time–pressure and dehydration
have been shown to affect spatial navigation, even in expert pilots.37

Whenever possible, the correlation between the field stressors and the
specific real-world task identified should be validated.

In summary, knowledge of specific safety-critical tasks and known
stressors that affect performance on that task can help define a prag-
matic performance metric. It is likely that a combination of measures
will be needed. Additionally, knowledge about potential degraded per-
formance can be used a priori to make design decisions and to deter-
mine effective countermeasures.

7. AI research and development framework

A challenge when developing AI models with wearable sensor data
is how to efficiently and effectively handle the sheer volume of data
that these sensors provide. The researcher and developer have choices
on what sensor types to use, how frequently data should be sampled,
stored, transmitted, or analyzed. Often the raw sensor data is too



Table 2
Research protocol for AI enabled models.

Stage Decision or task Description

1 Determine mission
outputs

Outputs required to be valuable to the operator
and the mission. Establish how these
requirements will be quantified.

2 Select Clinical
Assessment Battery

Used for AI model training and validation

3 Determine field
protocol for data
collection

Representative data for different scenarios,
sufficient collection of assessment battery to
enable high resolution of AI training

4 Data Collection Tools To be used by research staff on field, that may be
fatigued and distracted with intermittent power,
data logging and communications

5 Label Data Add labels to data to enable AI model to learn
6 Protocol study Perform prototype study on low subject

numbers to prove functionality of the protocol,
tools and computational models.

7 Large study Perform field trial to validate the research.
8 Deploy Deploy fieldable tool
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verbose for system limitations includingbattery power, storage capacity
or communication bandwidth. The trade-offs require local analysis to
deliver higher level information for onward transmission, e.g., a plethys-
mograph (PPG) 100 Hz 2 channel signal from a wrist device is used to
calculate and store blood oxygen (SpO2) versus heart rate at 1 Hz.

Validation of opaque AI models requires black box testing under
many representative scenarios to guarantee performance in uncon-
strained environments. With AI development these data are required
at the beginning of the research to train the model and also at the end
of the project to validate performance. AI enabled human performance
monitoring requires a method to gather data in the field to both train
the AImodel and validate its performance. This ‘black box’ approach dif-
fers from reductionist science in that it asks the question:

“Can an AI model accurately predict outputs with a given dataset
and, if so, what data is required to find the signal?”

A process is required to develop an AI model including input data
representing real world use cases, outputs valuable for intended use,
and comparison gold standards to both train the model and validate
performance. Field considerations for the teamcollecting data in remote
environments should take into account: spare parts due to lack of resup-
ply, fatigued and distracted research assistants, safety, environmental
noise (e.g., weather, terrain including slope and surface types, obstacles,
non-uniform inclines and surfaces), operational noise (e.g., fatigue,
sleep deprivation, operational distractions such as contact with the
enemy or wild life) and performance selection such as self-pacing and
activity type (e.g., walking, running or laying during rest periods), sen-
sors to represent fieldable solution options (SWaP), additional sensors
needed for logistics, and protocols to generate required loads (physio-
logical, centraland psychological).20,38–40

This method is recommended with low subject numbers initially, N,
as the logistics of field experiments is complicated and data analysis and
processing is time consuming. Pilot experiments will inform the proto-
col and validating AImodels with small N numbers allows the approach
to be proven. It is recommended that generalizability to larger popula-
tions is considered an important second step. Of particular note is Step
5 in Table 2 as this is unique to AI modeling where data are labeled
with additional information to enable the training step where the AI
model learns iteratively by measuring its predictive accuracy against
the labels.
8. Conclusion

Remote physiological monitoring can be useful when incorporated
into a DSS enabled with a system of AI models. This approach enables
a lower number of sensors, with lower SWaP, as ambient sensing can
5

use operational tasks as a stimulus to replace protocols. AI can use envi-
ronmental noise as signal and expert decision making can bring com-
plex probabilistic decision-making down range increasing the
knowledge skills and abilities of operators.

Adapting to field conditions has challenges that, if overcome, prom-
ise to increase performance, without adding additional burden to re-
mote autonomous operators down range. Field noise is both a
challenge and a stimulus for the ambient detection of response to the
stimulus when assessing performance or other parameters. Data collec-
tion for research with AI modeling requires special field protocols. This
systems approach offers the promise of decision support tools aiding
the warfighter operating autonomously down range in the near future.
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